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" NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2887
ON THE STABILITY OF THE LAMINAR MIXING REGION
BETWEEN TWO PARALLEL STREAMS IN A GAS
By C. C. Lin

SUMMARY

The stability of the mixing of two streams was studied both for
the interest in the problem and for clarifying certain points in the

 basic stability theory. It is shown that, when the relative speed of

the two parallel streams exceeds the sum of their velocities of sound,
subsonic oscillations cannot occur and the mixing region may be expected

-to be stable with respect to small disturbances. It is further shown

that, when viscosity and heat conductivity are neglected, if the flow
can execute a small neutral subsonic oscillation of finite wave length,
it can also execute self-excited oscillations of longer wave lengths
and damped oscillations of shorter wave lengths.

Rigorous developments of the mathematical theory of asymptotic
solutions confirm previous methods of solution of the stability equa-
tions in a compressible fluid. This theory also shows that, at high
Reynolds numbers, the damped oscillations in a strictly parallel main
flow have & structure similar to that of the vorticity field in fully
developed turbulent flow. .

Sample calculations are also included exhibiting various quantita—
tive properties of these small oscillationms.

INTRODUCTION

The mixing of two parallel streams of gas occurs in a number of
cases. An interesting exsmple is furnished by the slip stream in &
three-shock configuration. It has long been suggested that such laminar

" mixing zones could, at sufficiently high speeds, be stable with respect

to small disturbances although they are known to be very unstable at low .
speeds. The purpose of the present investigation is to find out some

of these stability characteristics. Apart from the development of the
general theory, there are included the calculations of the neutral and
unstable oscillations the extent of the amplification, and other related
properties.
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The basic equations for the study of small disturbances in the
laminar boundary layer of gases have been given in reference 1. However,
the development of the theory there has specific reference to the case
of a layer near a solid boundary. As pointed out in references 2 and 3,
the stability theory for a mixing zone in an incompressible fluid dif-
fers from that for a layer near a solid boundary in that solutions of
the exponential type are unimportant. This leads to the conclusion that
the effects of viscosity and heat conduction are negligible, except at
very low Reynolds numbers, in determining the characteristics of the
oscillations. To confirm this point, a rigorous mathematical theory of
asymptotic solutions was developed for the compressible case similar to
that indicated in reference 4 for the incompressible case. In view of
the mathematical interest involved, it was decided that this basic part
of the present investigation would be published separately in mathematical
journals‘(see references 5 and 6), and only the main results and their
physical significance will be presented here.

As in the case of an incompressible fluid, the "inviscid" case is
expected to be characteristic of the behavior of the disturbances at
moderately large Reynolds numbers. Most of the studies are, therefore,
made in the inviscid case. However, the interpretation of the inviscid
case must be subjected to the same care as in the incompressible case;
that is, in the case of damped disturbances, the differential equation
of the inviscid flow may not be regarded as valid throughout the real
axis. There is a finite viscous region even in the limit of vanishing
viscosity. The complex conjugate of the amplified disturbance is cer-
tainly a solutlon of the inviscid equation, but it is not a limiting
solution of the complete viscous equation. This behavior of the inviscid
solution reminds one of the vorticity structure of fully developed tur-
bulent flow as found by Batchelor and Townsend (reference 7).

The nonexistence of subsonic disturbances is usually assoclated
with the stability of the parallel flow. There seems to be some basis
for doing this, although the role of supersonic disturbances has never
been fully clarified. It is easy to see that, for certain combinations

of the properties of the two streams, it is impossible to have a sub-
 sonic disturbance relative to both. Under such conditions, one may
expect stability. These conditions for stability are developed herein
and are expected to hold, irrespective of the viscous effects.

Applying the theory of stability in the inviscid case, one can
further narrow down the possible range of instability. This will depend
upon the velocity and temperature distributions in the shear zone. In
the present work, calculations are made for gases with Prandtl number
equal to unity. -Although the condition of equal total enthalpy in the
two streams 1s also used, it is shown that this restriction can be
immediately removed by considering a moving observer. It 1s found
that the condition of stability thus found does not differ very much
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from that found above from general considerations. Thus, it may be -
surmised that the exact distributions of temperature and velocity have
only a secondary influence on the stability characteristics in the
mixing zone. Thus, the approximations used in the present calculations
of the basic velocity and temperature distributions cannot influence
the final results to any appreciable extent.

The neutral disturbances are of two kinds: (1) A steady deviation
and (2) an oscillation of finite wave length. Thus, there are two
branches of the neutral curve at infinite Reynolds numbers. They may
be expected to join together at low Reynolds numbers enclosing a region
of instability. Calculations of neutral and amplified oscillations are
carried out in a number of cases with one stream at rest.

This investigation, carried out at the Massachusetts Institute of
Technology, was sponsored by and conducted with the financial assistance
of the National Advisory Committee for Aeronautics. The author is
indebted to Mr. D. W. Dunn for his valuable suggestions and help in the
preparation of the final version of the report and to Miss Diana Mason
and Mr. W. V. Caldwell for their help in making the numerical calculations.

STEADY FLOW IN THE LAMINAR LAYER BETWEEN
TWO PARALLEL STREAMS
The basic steady flow under discussion is a Boundaryrlayer flow with

no body forces and no pressure gradient. The basic equations are (see
list of symbols in the appendix): o

. p*u* é}_lj_e_ + D*V* au* '____ o l-l* Bu* . (l)
ax* ;y* dy* Sy
O (ote) + () =0 . (2)

%% D * * % Q *\ _ O [.* or* ou*
2 m7) + O S e) 'g;(k '37) @) o




b NACA TN 2887

the pressure being a constant throughout the field. In the case of a
homogeneous incompressible fluid, with the streams at the same tempera-
ture, the temperature may be taken as constant throughout the field,
and the first two equations can be solved for the velocity distribu-
tions u*(x*,y*) and v*(x*,y¥). In the case of a compressible gas,
the integration has to be carried out for individual cases. However,
if the Prandtl number cpu*/k* is equal to unity, it is known that

there is a quadratic relation of the type

cpT* + % u*2 = A + Bu* (L)

between the temperature and the velocity, and one is again essentially
dealing with two distributions u*(x*,y*) and v*(x*,y*). Indeed, the
constants A and B are given in terms of the conditions in the
parallel streams as follows:

=

o
i

%(U2 +U1) + ep(Tp - ‘I'l)/(Uz )

=3
1

= - LUyl + o (1yUp - Tg0y) (V2 - V)

If the total enthalpy in the two streams 1 and 2 is the same, that is,
if

1.2 1.2

then B = 0, and the total enthalpy is constant throughout the whole field:

epT + 2w = C (7
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This is a particularly Simple case, to which, however, all other cases
can be easily reduced. This is done by rewriting equation (4) into
the form ' »

‘cpT* + %(u* - B)? = A+ B%/2 A (8)

One need only consider an observer moving with the speed B and con-
sider the relative velocity u* -~ B. Thus, the solution for general
specified values of Uy,T;, and U,,T, can be derived from the iso-

energetic solution with boundary conditions U; - B,T; and U, - B,Tz
by simply adding the constant B +to the u*-component of the velocity.l

In the following discussions, isoenergetic basic solutions will be
‘referred to often; however, it should be kept in mind that by the con-
sideration of a moving observer the general case may be obtained. This
transformation is not restricted to the steady flow but applies to the
consideration of the disturbances as well. Thus, if all the cases of
constant total enthalpy are calculated all the other cases are also
known.

So far, the viscosity coefficient may depend on the absolute tem-
perature in any manner. If there is direct proportionality of these
quantities, the solution in the compressible case can be expressed in’
terms of that in the incompressible case. These relations are well-
known and, in the following discussion, only the results relevant to
this case will be given.

Incompressible.Case

For 'the incompressiole case:

u*

il

Ulf'(ﬂ)

(9)
v¥

U5 vy U (ne - 1)

11t is to be noticed that in certain cases with Tlei <1 the
boundary value Uz - B for the corresponding isoenergetic problem may
be negative while Uy - B is still positive. Thus the isoenergetic
- problem may not be physically significant. However, for the purposes
~of theoretical analysis, this point is not important.
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where

n = y*/\jle*lUl (lO)
and’ f(n) satisfies the differential equation

feftr 4+ 28" =0 (11)

with the conditions

£'(q) —>1 &  —> o B
g (12)
U
£1(n) > =2 as B> -0
U1

" A third condition is arbitrary up to a translation along the n-axis.

For ‘a typical scale, the momentum-boundary-layer thickness 6% may
be introduced, which is defined by

o,U, Z0* =f: p*(Ul - u*) (u* - U2> dy* (13)

Then

o o ,
=_.___._=f [l-f —| f(n) dn (14)
\lVlX*IUl -oov - |
for an incompressible fluid. It will be seen later that the same for-

mulas apply for a compressible fluid in the iscenergetic case.

Calculations made by Gortler (reference 8) for the turbulent mixing
region can be easily adopted for the purpose at hand. There is only a
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slight difference in the method of representation.
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To convert his

function ’F'(g) to the notation of this report, the following rela- -

tions should be used .

£1(n) = —=— F'(¢)
- 1+ : ,
e (15a)
n=2\1+xE
‘ . ' »
where
Uy - U ‘
A = .E;___E » ‘ (15b)

U+ Uy
The converted results are given in table I and figure 1.

Compressible Case

For the compressible case with constant total énthélpy; W* o T*,

where
W= U (t) ()
and
™ - Tl(l AR M12>E ce2e)]
w;th | y : ) | ,
¢ \ | N B '
. = _y =l L a2 T ‘ .
1 /; { — M E £ (C]} dg - (a8
where ‘ | ‘

= y*/ le*/Ul
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The momentum thickness 6% can be defined by the same equation (equa-
tion (13)) and can be shown to have the same value (equation (14)) in
~ dimensionless form. Velocity and temperature distributions in the case
Up = O have been calculated for several Mach numbers; these are tabu-

lated in table II and plotted in figure Z.

A GENERAL RESTRICTION FOR EXISTENCE OF

NEUTRAL SUBSONIC DISTURBANCES

Before going into the general theory of stability, a preliminary
discussion of the stability of the mixing zone will be given. It will
be found below that the results thus obtained give quite an adequate
description of the general dependence of the stability of the mixing
zone on the Mach numbers of the streams. It will be shown that, if
the average Mach number M of the relative motion (defined by equa-
tions (25) and (26)) exceeds the value 2, subsonic disturbances in the
sense of reference 1 cannot exist, and the mixing zone may be expected
to be stable.

Consider two parallel streams at speeds U; and Up, tempera-
tures T and Tp, and Mach numbers M; and M,. For definiteness,
take Uy - Up > 0. Consider an observer moving with the speed U,.
Then the streams appear to have speeds Uy - Up and O, while their

_temperatures are obviously'not changed., If

¢’ =c¢ - Uy : (19)

denotes the speed (relative to the moving observer) of a wavy motion
propagating in the direction of the stream (¢’ positive or negative),
then the conditions for subsonic disturbances are

|(U]_—U2)—c'| < e (20)

le']| < a, (21)

where al' and a, are the velocities of sound in the streams. It is
clear that subsonic disturbances can always exist if U; - Up 1s less
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than a;. F@r U - Us > al; condition (20) can be satisfied only
with ¢' > 0. Thus ‘ ‘ ‘ '

T '

0<c'<ay, that is, 0<c - U, < ay o (22)

Now, note that condition (20) is actually

IUl - c| { a1
and hence
| -a,l<Uyl'-c<al : | . (23)
\ S Addiﬁg ré;atioﬁs (22) and (23), 1t is found that
2 . | ‘
U; - Up<ay +ay ‘ (2k)

‘is a necessary‘condition for the existence of subsonic disturbances.
By Introducing the average velocity of sound

3

7 = -]2:<al + az) : | (25)

and the average Mach number of relative motion

B - (o - UZ)/E o (e8)

defined with respect to this average sound velocity, it may be concluded
-that subsonic disturbances cannot exist (and the mixing zone may be
expected to be stable) if the average Mach number M of the relative

- motion exceeds the value 2, as stated at the beginning of this section.
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In terms of the Mach numbers of the two streams, condition (2k)
states that if

Ml>l+\ﬁﬁ(l+M2) (27)

Subsonic disturbances cannot exist, and the motion is stable. (See
fig. 3.)

In the case of constant total enthalpy, the temperature ratio
TZ/Tl can be expressed as

, 1+(r- 1), 2[2

=g - (28)
T
L1+ (- Dmfe
Then condition (27) becomes
-11/2
1+ (y - l)Mlz/Z /
Mo>1 4 - (L +y) (29)
1+ (7 - )Mp2[2
The critical condition is
1+ (y - l)M12/2 1/2
Ml =1 + (l + Mz) (30)

1+ (y - 1)M2[2

Removing the square root,

1+ (7 - D82 (g - 1)2

1M, 2 (Mp + 1)2

1+ (v

This form suggests an obvious solution, M; = -M,. Another solution

can then be easily obtained as
(3 - 7)M; + b

1~ (31)
(3 - 7) - 2y - DM,
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"By substituting in equation’(30), Ml'= -Ms is found to be an extra-

neous solution. The only solution of equation (30) is then given by
equation (31). o ' :

Thus the flow is stable if

(3 - 7)Mg + 4

(3 -7 -2y - 1

M > . (32)

The curve for equation (31) is shown in‘figure'h, where the region to
the left of curve A is the region of possible instability. Note the =
symmetry with respect to the line My = -Mp, corresponding to a change

of the positive direction of the x—axis‘in the physical problem. The B
line M; = M, is drawn to take care of the condition U; - Uy > 0,

since Uy = Uy when M; =M,. The asymptotes of the curve for equa-
tion (31) are '

= (3 - 7)/2(y - 1) | (33)

[aV]
1

and

My

-(3= 7)/2(y - 1) (34)

With 9 = 1.4, these values are ¥2. The intercepts are

My

WE-n (3
and

My

i

-4/(3 - 7) I €'

With 7 = 1.4, thése values are ¥2.5. (Cf. reference 9.)
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GENERAL STUDY OF SMALL DISTURBANCES IN A NEARLY PARALLEL

FLOW FIELD IN A COMPRESSIBLE FLUID

The general theory of a small disturbance in a field of nearly par-
allel flow of a gas has been developed in reference 1. The rigorous
mathematical proof and improvement of the theory are given in detail in
references 5 and 6. In this report, merely the main conclusions and
‘their physical interpretations are outlined without going into the
details. Applications of the theory to the specific case at hand will
be discussed in some detail.

Consider a nearly parallel stream with dimensionless velocity and
temperature distributions w(y) and T(y). The neglect of the depend-
ence of these quantities on x and the omission of the y-component of
the basic flow can be justified by detailed investigations. The line-
arized differential equations for small disturbances then possess solu-
tions of the type )

u' = ReE‘(y)eia(x—ctﬂ R

v = Re[up(y)etex-ct)]

o = Re[r(y)ela(x-ct)] ! -
p' = Re E(y)ei@(x-ctﬂ

o = refo(y)elalx-ct)] |

where u', v', p', p', and T' are the perturbations of the two com-
ponents of velocity, the density, the pressure, and the temperature, all
in a sultebly defined dimensionless form. The constants o« and c are,
respectively, the real wave number and the complex wave speed.

The differential equations for the amplitude functions f(y), @(y),
r(y), n(y), and e(y) are rather complicated. However, if the effects
of viscosity and heat conduction are neglected, they become a relatively
simple system, which can be reduced to the following single differential
equation for @(y):
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l(w -c)p - w'g|  af(w - c)¢' \
- = 8
e M o

All the other varlables can be expressed In terms of ¢ and ¢' as

follows:
£ = -iE&z(w - c)w'p - T¢Z|/[T - ME(w - c)é_]T
r = ilzﬁ' + if)k; p'é]/(w - c) o
| -> (39)
X = insz(V - e)f + W'ﬂ_ﬂ
6 = ™(«/p - v/p) | | - ‘_J |

The boundary conditions are that the dlsturbance should be bounded
as y———}+oo. :

The inviscid system would have given a well-defined characteristic-
value problem if it were not for the fact that differentisl equation (38)
has s singularity at the point y = y, where w(y) = ¢. This singu-
larity disappears only when d(pw')/dy = O at the same point. Other-
wise, a solution of equation (38) has a logarithmic singularity at
¥y = y. @and the characteristic-value problem associated with this equa-

tion becomes indeterminate until the proper branch of the solution is
determined. .

The determination of the'propef branch of the solution and its
associated physical interpretation is one of the most delicate points
in the theory of hydrodynamic stability. The mathematical analysis of
the solutions of the complete viscous equations and their limiting solu-
tions will be made first before discussing thelir physical interpretation.

~ The complete system of viscous equations can be shown to be equiva-
lent to a system of six linear equations of the first order in six
unknowns. Thus, there are six independent solutions. These solutions
have been formally obtained as asymptotic series in reference 1, and
their rigorous mathematical investigation has been carried out in
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references 5 and 6. It is found that two of the six solutions can be
expressed in asymptotic series of the form

¢=¢(O)+i¢(l)+. ..
XZ

where f(o), ¢(O), . . . are the inviscid solutions satisfying equa-

tions (38) and (39) and A2 = aR, - where R is the Reynolds number based
on the thickness of the mixing region. Thus, the formal limit of equa-
tions (40) does approach the inviscid solution, but a complete study of
these equations also carries the knowledge of the proper branch to be
used. '

Four other solutions of the complete system of viscous equations
are of the form

Hy o
i

F exp(MQ;)
i=1,2,3,%4 ()'l'l)

AN
]

o exp(AQ;)

where

Q1=-Q2=fy\,%—(w—0)vdy

- (42)

¥ {iPrg
Q3 -way — (v - ¢c) dy

C

~

and F and ¢ can be expressed as power series of A, involving only
a finite number of positive powers.
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In the establishment of these asymptotlc solutions, it is shown that
the lines Recal) =0, Re(Q3) = 0, and Re(Ql - Q3) 0 are of interest,

’

The geometry of these lines relative to the point yc (where W =c)  and

the real axis of the y-plane are shown in figure 5. ' There are asymptotlc
solutions expressed in equations (40) and (41) which maintain the same
analytical expression on the two sides of the dotted lines. However, in
crossing the solid lines, they generally change their behavior. Thus,

the following conclusion may be drawn: The proper. branch of the multiple-
valued asymptotic solutions is obtained by taking a path in the complex
y-plane below the point y =y, (in this case w(y) is monotonically

1nerea51ng along the real ax1s).

This is the branch taken in reference 1. By examining the behavior
of solutions of the type given in equations (41), it can be easily shown
that they diverge for either positive or negative large values of y.
These solutions should therefore, be rejected in the present problem
The effect of v1sc051ty is then to be obtained through solutions of the
form of equatlons (40)

GENERAL STABILITY CHARACTERISTICS IN

THE INVISCID CASE

Much of the discussion of the inviscid case in reference 1 applies
to the present case. However, as noted above, in the present problem,
the possibility can be more readily realized that subsonic disturbances
may not exist at all, and that the motion may then be expected to be
completely stable w1th respect to small disturbances. Another main
difference lies in the "steady" deviation, that is, solutions . .of equa-
tion (38) with « = 0. In the present discussion, the general line of
discussion in reference 1 will be followed. However, the difference in
the boundary conditions often causes a difference in the method of
analysis. The arguments are, therefore, presented in some detail. Also,
it will be shown that disturbances having wave- ~lengths slightly longer

~than that of the neutral subsonic disturbances of finite wave length

are unstable while those with slightly shorter wave: lengths are the
stable ones. This conclusion also applies to the case of the boundary
layer, but it was not obtained in reference 1. The analysis alsc leads
to an approximate estimation of the dependence of amplification on wave
length. This will be used for: the calculation of the ampliflcatlon of
the dlsturbances in the sectlon 'Self-Excited Osc1llat10ns."

Some general analytlcal properties of the solutions of equation (38)
will be first summarized, particularly for the case of subsonic disturb-
ances, In this case, :
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T - Mlz(w - c)2 > 0 . (43)

for both free streams. For large positive values of ¥y, equation (38)
may be approximated by

P - B =0 with B¢ = G,ZE- M 21 - c)ﬂ (4k)

Fof large negative values of y, it may be aspproximated by

U \2
¢1v - 322¢ =0 with 322 = az 1l - M12<GE - > T2 (45)
1

Since both Blz and Bzz are positive, the solution ¢(y) is exponen-

tial in nature for large values of y 1in the case of subsonic disturb-
ances, with the exception of the case a = O. In that case, two inde-
pendent solutions of equation (38) are

®l =W - C (h6)

and

0y = (v - )f“(——l—)g - Mﬁ\ ay (v7)
w-c _

The first solution is bounded while the second varies linearly with ¥
for large values of y.

’For any value of ¢, the bounded solution (equation (h6)) corre-
sponds to no disturbance at infinity. In fact, for a = O, the disturb-
ance v' is identically zero, by equation (37). The other components
of the disturbance are given by equations (39), and it can be easily
verified that they all vanish at large distances. ‘

It can be shown from the general nature of the temperature and
velocity distributions that condition (43) holds throughout the mixing
zone if it holds in both free streams. It is then obvious that
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equation (38) has a singularity only at w - ¢ = 0. Actually, even
if T - Miz(w -.c)2 = 0, 1t only gives rise to an apparent singularity.

Analysis of the solution in the neighborhood of the point y = yé
(where w = ¢) gives the following two solutions:

1= (v - vo)ealv - yc)y -

8)

P2

gz(y - -Vc) + Py loge (_Y - Yc)’

where . -. | | . , o
2 ,

K= F(—‘iﬂ (49)

. | (Wc')3 dy\T ¢ ,

and g, and g are power series in (y - yc) with gl(o) = wc"% 0
and gz(O) = To/we' # 0. The proper branch of the logarithmic function
is to be taken in accordance with the method discussed in the preceding
section. : ‘ ‘

For real values of c, it can be shown.that the Reynolds shear
stress ‘ 3 : ‘

T = -pu'v’ , ~ A (50)

is a conStant except for a possible jump at y=yY

o+ In fact, this

Jump is
=% :cx(wc')z|;z$c|2'/'rc2 o (51)

when one passes from y, - O to y, + O. Thus, for a neutral disturb-
ance with o # O, the condition ’
K=0 A . ' (52)

must be satisfied, since T =0 for y'—~a-iw‘ and, therefore, does not
have any Jump. ‘ B
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Thus, for the existence of a subsonic disturbance, the quantity,

dflaw)y _df dw
dy(T dy) dy(p dY) (53)

must vanish at some point in the field; furthermore, the corresponding
value wg of w must be subsonic relative to both streams; that is,

U .
1-i<ws<-?:(1+i> (5k)
My AT |

The above reasoning can be applied to the case of the boundary layer;

a somewhat different argument was used in reference 1. A little calcu-
lation will show that, in general, condition (53) will be satisfied,
although condition (5&) may not. If the latter is also satisfied, then
there actually exists a subsonic disturbance with c¢ = wg. To prove

this, equation (38) is rewritten in the form

2
%(h %) - (q + %—)?5 =0 , (55)

where
. 1 -
h(y) = E -»Mlz(w - c)__z-_l’ >0
, (56)
ay) = —— 3-(11 Q‘E)
W -cC dy\ dy

With ¢ = wg, q(y) is regular all along the real axis. This is a

2

characteristic-value problem for the parameter k = -a” and is associ-

ated with the variational principle

af_: E(%Y + q¢ﬂ dy = 0 ‘ (57)
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‘with

" | e
f - dy = Constant (s8)

The least value for —az‘ is then given by the minimum value of the

ratio ‘ :
. ,
kl _f [ +qf] dyf %—dy 1 : (59)

for all functions f(y) such that the integrals in this ratic are con-
vergent. Now, it is necessary only to show that for certain functions
the ratio of the integrals is negative.

In the choice of such a function, it is necessary for only the
numerator in equation (59) to be convergent. The convergence of the
integral in the denominator is immaterial, for one can always modify
the function at sufficiently large values of |y| so that the denomi-
nator becomes convergent without altering the sign of the numerator.
To choose a function so that the integral

I =fé° (ﬁ'z_ +ar?) ay - (60)

is negative, it is first noted that

I-=0 for f=w-c v , (61)

" This follows from the fact that p =w -c is a solution of equation (55)

when a = O. It can also be directly verified. Obviously, the value of

"I is not changed if f 1is now changed to |w - ¢l. A further modifi-

cation of the function would yield the desired result. In the neighbor-
hood of y., |w-c| is small, but w' is finite. If in this neighbor-
hood the function f(y) = |w-c}| is replaced by a horizontal straight
line, the integrand in equation (60) is certainly decreased (since ¢ >0
and a change in f' causes a larger change in the integral than that

in f), and the resultant integral is negative. This completes the proof
desired. '
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Thus, the sufficiency of conditions (53) and (54) for the existence
of subsonic disturbances is also established. Let the corresponding
value of o be denoted by ag.

Next, it will be shown that for a slightly less than ag the
disturbances are unstable. To prove this the quantity (dc/dk)s will
be calculated, and its imaginary part will be shown to be positive._

Consider a characteristic function @(y;k,c) of equation (55)
corresponding to a given value of k. As c¢ changes, k also changes.
If equation (55) is differentiated with respect to k, the following
equation is obtained

) wors [Bag).adet. o

dy\ dy T dy\oc dy dc¢ [dk T
where-
= Of . of dc ’
= e o — 6
4 ok 9dc dk (63)

Now, multiply equation (62) by @, equation (55) by @, subtract the
results, and then integrate with respect to y along a path in the com-
plex plane which leads from y = -» on the real axis to y = » on the
real axis but passes below the point y.. The following equation is then

obtained for dc/dk:

de [ |onfag\? | dq 42 [T g
Ek_j:w|g_c.<a§> +§€¢] db’—j:m-&rdy (64)

So far equation (64) is general. Now, specialize to the case of
the neutral disturbance in question. Most of the integration can then
be carried out along the real axis, with real resultant values. However,
the integral

J=f°°§%¢2 ay (65)
-, OC
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must be evaluated along an indented path with a small detour below vy,

since 0g/dc has a pole at that point. Calculations show that the
. imaginary part of J 1is '

In(7) = ﬂ(%/wc,‘){%%@ g};’ﬂ TS

if this quantity does not vanish. Indeed, this quantity can be seen
to be negative.

Thus, equation (6&) ylelds a relation of the form

9% (P+1Q) =R >0

4

where Q = Im(J). Thus,

d " R
e R __(p-1q (67)
has a positive imaginary part, as required _
In the incompressible case, equation (64) reduces to
. dc ",w_vl ) 2 ) .
| pe ay = J[ pe dy (68)
ak w (W - c)2
and the imaginary part of dk/dc is
‘ - Im(dk/dc) - vr(féclwc / ¢2 dy (69)
.
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NEUTRAL. OSCILLATIONS

From the discussions of the last section, another limitation is
imposed on the occurrence of neutral subsonic disturbances. Since the
wave speed of the neutral disturbance must be equal to the flow speed
wg at the point where

—d—<p 9‘—’) =0 | (70)

dy \ dy

subsonic disturbances cannot occur if the speed wg 1is supersonic rela-

tive to either stream. Calculations of wg are made for the case of

uniform total enthalpy. Instead of using equation (70) directly, 1t
is found convenient to transform it into the form

, -1 '
3 1+ 2 - wo =0 with ¢ = f(¢) and w = f£'(¢) (71)

3y° (y - 1)M2

where  1s the stream function, since the relation w(y) .is identical
with that in the incompressible case. The results of these calculations

. are shown in table III. In comparing these values against condition (5&).
it is found that the condition

1
l -=c Wy
M

is never violated, but the values of Wy below the solid horizontal
lines in the table are too high to satisfy the condition

U
wg < —E 1+ iL)
Uy Mo

Thus, for a given Mach number in the stream M,, the Mach number M
in the other stream can become so high that the speed of flow corre-
sponding to condition (70) becomes supersonic relative to the slower
free stream. Subsonic disturbances then cannot exist.
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The critical case of sonic disturbance is reached when

v Us 1
Wo = e {1l + =

-5t )
Calculations for this case are tabulated in table IV. The corresponding
values of M; and Mp are plotted as curve B in figure n to mark the
limit of stability. Only the region to the left of this curve can have
subsonic disturbances. It is seen that the condition is more restrictive
than that obtained from general considerations alone. 1In particular, in
the case where one stream is: at rest, the curve B shows that the flow..
becomes completely stable at a free-stream Mach number of 1.7, in con-~
trast to the value 2.5 given by curve A. Since they are, however, not
very much different, it may be surmised that the exact distributions of

temperature and velocity in the mixing region may not be too 1mportant
in determining the over—all stabllity characteristics

It may be recalled that the restriction to the case of constant
total enthalpy can be immediately removed by considering a moving obser-
ver. Thus, for all cases with Prandtl’ number equal to unity, it is nec-

~ essary only to convert the values of the speeds Ul: Uz, and ws

involved. Condition (70) is not modified by the reference to 8 moving

Lobserver

With the neutral Wave speed thus determined equation (55) can. be
integrated to give the amplitude of the oscillatlons.‘ For this purpose,
it is necessary to find the proper value for -a. This can be done by

‘several trials, with the first approximation given by the ratio-of the

integrals in equation (59) The ratio will yield the characteristic -
value only when the function -f(y)  is the characteristic function, but
it is known that any reasonable approximation to 1t will give a- very
close approximation to the characteristic value.

Calculations of these neutral oscillations are carried out for

several Mach numbers in one stream with the other at rest ,These are
given in table V and figure 6 : , o

 SELF-EXCITED OSCILIATIONS

The formules given in the sectiou 'General Stability Characteristics
in the Inviscid Case" have been used to calculate the characteristics of

- self- ex01ted oscillations It 1s found that

= 0.177“;‘9.2091
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for the case M) =1 and

de
— = 0.093 - 0.28
0.093 0 71

for the incompressible case. The results are shown diagrammatically in

figure 7. It is seen that the extent of amplification is fairly large.

There is also indicated a decrease of amplification with increasing Mach
number.

It would be easy to calculate the amplitude function of these self-
excited oscillations by using the characteristic values obtained above.
This was not carried out because of limitations in time.

NATURE OF OSCILLATIONS IN LIMIT OF

INFINITE REYNOLDS NUMBER

Calculations in the section "Neutral Oscillations" indicate that
the neutral oscillation has quite a simple amplitude distribution. 1In
fact, it does not show any node. The amplified disturbances are expected
to show similar characteristics. The mathematical theory (references 5
and 6), however, indicates that the damped oscillations behave in a much
more complicated manner. It is concluded that there is always a finite
viscous region in the interior of the fluid, no matter how large the
Reynolds number may be. In fact, & minimum width of this region is
determined. This has to do with the crossing of the solid lines by the
real axis of y in figure 5. The solution in the part of the real axis
between the solid lines shows exponential behavior - and therefore viscous
nature - if the solution in the outside parts shows the inviscid behavior.
This type of conclusion has been reached in reference 1. However, it
was possible only to suggest that such viscous behavior would occur at
the solid lines. The improved theory shows that it must occur through-
out the region in between. It is important to note that the complex con-
Jugate of an amplified solution does not represent & damped oscillation
and vice versa, although this conclusion can be easily reached by a
cursory exasmination of the inviscid equations. The damped oscillations
do not satisfy the inviscid equation all along the real axis; otherwise,
.they could not take on the proper branch of the logarithm as specified
in the section "General Study of Small Disturbances in a Nearly Parallel
Flow Field in a Compressible Fluid." They exhibit a behavior very much
like that of the vorticity distribution in fully developed turbulence
flow. For large Reynolds numbers, there is one part of the space where
the vorticity is highly concentrated; in another part, there is very
little vorticity. This illustrates the two kinds of limiting behavior
of a viscous fluid in the limit of infinite Reynolds number: In one
part of the field, the inviscid behavior is approached; in another part,
it becomes highly oscillatory spatially.
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CONCLUSIONS

From a study of the stability of the mixing of two parallel'streams

" in & gas, the following conclusions may be drawm:

1. If the relative speed of the two parallel streams exceeds the sum

- of their velocities of sound, subsonic oscillations cannot occur, and

the mixing region may be expected to be stable with respect to small
disturbances.

2. A further necessary condition for the possible occurrence of
small subsonic disturbances is that somewhere in the field

565) -0
. Ay \ dy

where y 1is a positional coordinate across the stream, p is the den-
sity of the gas, and w 1is a dimensionless velocity distribution. This
condition is usually satisfied for the present class of problems.

3. If the speed of the flow at such a point is denoted by wg,

then the field of flow can execute a neutral wavy oscillation having
a finite wave length and propagating with the speed . c = Wg if and

only if wg 1is subsonic relative to both streams. There is no other

possible neutral oscillation. This leads to a more strict condition
of stability than that given by conclusion 1. :

4., Under the above conditions, the field of flow can execute
amplified wavy oscillations having wave lengths longer than that of
the neutral oscillation. Oscillations having shorter wave lengths are
damped. (This specific form of the conclusion was not obtained for
the boundary layer at a solid surface in NACA TN 1115, ‘but its validity
can be shown by the present method.) The extent of amplification in
such cases is fairly large. .

5. At large Reynolds numbers, the amplified disturbances are
essentially free from the effect of v1scosity On the other hand,
disturbances with finite damping are expected to exhibit a highly
oscillatory behavior over a finite region in the field of flow. This
is similar to the structure of the vorticity field in fully developed
turbulence .

6. For the case of constant enthalpy with one stream at rest, the
wave length of the neutral disturbances increases with increasing Mach
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number in the other stream. The flow becomes completely stable at a
free-stream Mach number of 1.7. This is more restrictive than the
value 2.5 obtained by applying conclusion 1 to the present case.

Massachusetts Institute of Technology
Cambridge, Mass., July 30, 1952
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APPENDIX
SYMBOLS

The quantities bearing subscript 1 1in the last column are the
dimensional quantities in the first free stream. Corresponding quan-
tities in the second stream bear a subscript 2. The quantities with-
out a prime satisfy the equations of steady motion, those with prlmes
satisfy the disturbance equations.

Dimensional ’ Dimensionless , u Reference
quantities v quantities , . quantities

Positional coordinates:

x* x 1 = 2\[avyx* /Uy

¥ y = n/2\2 Cot
Time:

£* , % - o 1/uy
‘Velocity components in airections of x- and y-axes, respectively:

o+ u w(y)+£(y)elolx-ct) | Uy

VE g X! | o (y)elalx-ct) | Uy
Density of gas: | |

p¥ + p*!  ely)er(y)elalx-ct) e
Pressufe of gas: | .

p* + p*' p(y J+(y)ela(x-ct) - Py
Temperature of gas; |

T* +‘T*} T(y)+6(y)el(x-ct) | Ty
Coefficient of viscosity of gaé:

p¥ ' : H 'Hl
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Dimensional ‘ Dimensionless Reference
quantities quantities quantities

Thermal conductivity:

k* n/Pr Cphy
Wave number of disturbance:

a*'= 2x/0\* a = 2n/A -1
Phase velocity of disturbance:

c*. c | Uy
Specific heat at constant volume:

Cy 1 ‘ Cy
Specific heat at constant pressure:

Cp 4 Cv
Gas constant per gram:

R* y -1 Cy

Reynolds number

R = plUl Z/lll
Mach number

Prandtl number

Pr = cpu*/k*
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TABLE T

VELOCITY DISTRIBUTIONS IN INCOMPRESSIBLE CASE

E?or definition of symbols, see equations (10),
(14), and (15b); w = u*/tﬁ]

() For A =0.2 and 6 = 0.098

| w | W 1 W
-9.0 0.667 -2.6 0.684 1.4 0.941
-8.8 | cmemm 2.4 .689 1.6 .952
8.4 | e -2.2 .695 1.8 .961
-8.0 | —=-== -2.0 .701 2.0 .969
“7.6 | —==ma -1.8 .709 2.2 .976
-T2 | =eem- -1.6 .719 2.4 .982
6.8 | —e-e- -1.h4 .729 2.6 .986
6.4 | e--e- -1.2 T4 2.8 .990
6.0 | comee -1.0 .54 3.0 .993
5.6 | ceee- -.8 .768 3.2 .995
-5.2 .668 -.6 .784 3.4 .996
-4.8 .668 - .800 3.6 .997
=4y .668 -.2 .816 3.8 .998
-4.0 669 0 .833 4.0 .999
-3.8 .670 .2 .851 h.2 .999
-3.6 671 o .868 L.y .999
-3.4 673 .6 .884 4.6 1.000
-3.2 675 .8 .900 4.8 1.000
-3.0 677 1.0 .915 5.0 1.000
-2.8 .680 1.2 .928
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TABLE I

VELOCITY DISTRIBUTIONS IN INCOMPRESSIBLE CASE - Continued

(b) For ) = 0.4 and 6 = 0.310

q W | W n LA
-9.0 0.429 -2.6 0.470 1.4 0.891
-8.8 | ~--=- -2.h <479 1.6 .909
S0 R (O -2.2 .489 1.8 .926
8.0 | mmmmm -2.0 .501 . 2.0 oLl
~7.6 | —eem- -1.8 .515 2.2 .953
~7.2 | —eee- -1.6 .531 2.4 | .964
6.8 | =eem- -1.4 .548 2.6 .972
. 6.4 | cmeee -1.2 567 2.8 .979
6.0 | —eeen -1.0 | .588 3.0 .985
-5.6 430 -.8 .611 3.2 .989
- -5.2 430 -.6 .635 3.4 .992
-4.8 432 ' 661 || 3.6 .99k
4.k A3k -.2 .687 3.8 .996
-4.0 437 0 Rrann 4.0 .997
'-3.8 440 .2 .Th2 4.2 .998
-3.6 L4h3 A .769 by .999
-3.4 LL6 .6 .796 4.6 .999
-3.2 451 .8 .822 4.8 1.000
-3.0 456 1.0 84T 5.0 1.000
-2.8 462 1.2 .870




32 : NACA TN 2887

TABLE I

VELOCITY DISTRIBUTIONS IN INCOMPRESSIBLE CASE - Continued

\

(¢) For A =0.6 and 6 = 0.573

] W | w Ul w
-9.0 0.250 -2.6 0.319 1.4 0.848
-8.8 .250 -2.h .331 1.6 .873
-8.4 .250 -2.2 .345 1.8 .896
-8.0 .250 -2.0 .361 2.0 .915
-7.6 .250 -1.8 .379 2.2 .933
-7.2 .250 -1.6 .398 2.4 LOuT
-6.8 .251 -1.4 420 2.6 .959
6.4 .251 -1.2 el 2.8 .969
-6.0 .252 -1.0 470 3.0 977
-5.6 .253 -.8 498 3.2 .983
-5.2 .255 -.6 .527 3.4 .988
-4.8 .258 _ .559 3.6 .991
~h.y .263 -.2 .591 3.8 .99k
-4.0 .270 0 .625 4.0 .996
-3.8 .27k .2 .659 4.2 .997
-3.6 .279 A .693 e .998
=3.4 .285 .6 727 4.6 .999
-3.2 .291 .8 .760 4.8 .999
-3.0 .299 1.0 .791 5.0 1.000
-2.8 .308 1.2 .821




NACA TN 2887

VELOCITY DISTRIBUTIONS IN INCOMPRESSIBLE CASE - Continued |

TABLE I

(d) For A = 0.8 and 6 = 0.860

n W, Y w 4l w
-9.0 0.111 -2.6 0.209 1.4 | 0.813
-8.8 11 -2.4 .224 1.6 .8h2
-8.4 A1l |} -2.2 .2ko 1.8 .869
-8.0 111 -2.0 .258 2.0 .893
-7.6 112 -1.8 .279 2.2 .91k
-7.2 112 -1.6 .301 2.4 .932
-6.8 | .113 -1.4 .326 2.6 947
-6.4 .115 -1.2 .352 2.8 . 960
-6.0 J117 -1.0 .382 3.0 .970
-5.6 .120 -.8 13 3.2 977
-5.2 .12k -.6 RIS 3.4 .98
-4.8 .129 -4 481 3.6 .988
=Ly .137 -.2 .518 3.8 .092
4.0 L1146 0 .556 4.0 .94
-3.8 .152 .2 .59 4.2 .99
-3.6 .159 A .633 bk .998
-3.4 .167 .6 672 4.6 .999
-3.2 175 .8 .709 4.8 .999 -
-3.0 .185 1.0 .Th6 5.0 1.000
-2.8 .196 1.2 .780 .

33
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TABLE I

VELOCITY DISTRIBUTIONS IN INCOMPRESSIBLE CASE - Concluded

(e) For A =1.0 and 6 = 1.160

| w 1 w U] w
-9.0 0 -2.6 0.127 1.4 0.783
-8.8 .000 -2.4 .143 1.6 .816
-8.4 .001 -2.2 161 1.8 847
-8.0 .001 -2.0 .181 2.0 874
-7.6 .002 -1.8 .202 2.2 .898
-7.2 .00k -1.6 .227 2.4 .919
-6.8 .006 -1.h4 .253 2.6 .937
-6.4 .009 -1.2 .282 2.8 .951
-6.0 .013 -1.0 .313 3.0 .963
-5.6 .018 -.8 .347 3.2 .973
-5.2 .02 -.6 .383 3.4 .980
-4.8 .033 -k 420 3.6 .986
I .o42 -.2 459 3.8 .990
-4.0 .055 0 .500 4.0. .99k
-3.8 .062 .2 .542 h.2 .996
-3.6 .070 A .584 L.k .997
-3.4 .079 .6 .626 4.6 .998
-3.2 .089 - .8 668 4.8 .999
-3.0 .100 1.0 .708 5.0 1.000
-2.8 .113 1.2 CThT
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TABLE II

VELOCITY AND TEMPERATURE

DISTRTBUTIONS

IN COMPRESSIBLE CASE
E)ne stream at rest; A = 1; 6 = 1.16(2]
(a) My = 0.5

1 w T n W T
-12.6 0 1.050 -1l.h 0.261 1.047
=12.2 | cmmee | meeea -1.2 .289 1.046
“11.8 | mmmee | e -1.0 .320 1.045 -
0 s 10 VA INRPSRSOOUV, o -.8 .352 1.04k
211.0 | mmeme | e -.6 .386 1.043
10,6 | emmem | - -4 423 1.041
=10.2 | emmme | emeee -.2 A6l - 1.039
-9.8 | ccmme | emee- 0 .500 1.038
-9.4 0 1.050 .2 .540 1.035
-9.0 001 | ----- A .581 1.033
-8.6 001 | eee-- .6 .622 1.031
-8.2 .002 ———— .8 .662 1.028
-7.8 .003 | =—=--- 1.0 .702 1.025
-T.4 004 | meee- 1.2 .T40 1.023
=7.0 006 | —--e- 1.4 776 1.020
-6.6 009 | —e-ee . 1.6 .809 1.017
-6.2 013 | —---- 1.8 .8k0 1.015
-5.8 019 | ceeee 2.0 .868 1.012
5.4 025 | eeee- 2.2 .892 1.010
-5.0 .033 1.049 2.4 .91k 1.008
-4.6 043 | e 2.6 .932 1.007
-4.2 054 | —eee- 2.8 .okT 1.005
-3.8 - 069 | emee- 3.0 .960 1.00k4
-3.4 086 | —---- 3.k .978 1.002
-3.0 108 | —e--- 3.8 .989 1.001
-2.8 21 | memee k.2 .995 1.001
2.6 A36 | eeeem 4.6 .998 1.000
2.4 152 | —eee- 5.0 .999 1.000
-2.2 A70 | —---- 5.k 1.000 1.000
-2.0 .190 1.048 5.6 1.000 1.000
-1.8 .211 1.048 6.0 1.000 1.000
-1.6 .235 1.047

35
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TABLE IT

IN COMPRESSIBLE CASE - Continued

NACA TN 2887

(b) M, = 1.0
n W T | W T
-12.6 0 1.200 -1.4 0.282 1.184
-12.2 | emeem | e -1.2 .309 1.181
11,8 | mmmee | e -1.0 .336 1.177
~11.4 | emeee | ameee -.8 .366 1.173
~11.0 | —emee | ceeee -.6 .397 1.168°
O R i -k -430 1.163
-10.2 0 1.200 -.2 465 1.157
-9.8 001 | eeeee 0 .500 1.150
-9.4 002 | —eeee .2 .537 1.142°
-9.0 002 | —-eee A 574 1.134
-8.6 00k | aeeae .6 611 1.125
-8.2 .005 | —-e-- .8 .648 1.116
-7.8 007 | ~e-e- 1.0 .685 1.106
=Tk 010 | ~—-ee- 1.2 .721 1.096
-7.0 Ol | eeeee 1.4 .756 1.086
-6.6 019 | —eeee 1.6 .789 1.076
-6.2 024 | ceeee 1.8 .820 1.066
-5.8 031 | —eme- 2.0 .848 1.056
-5.4 039 | eemesm 2.2 874 - 1.047
-5.0 )RS S (R 2.4 .897 1.039
-4.6 059 | eee-e 2.6 .918 1.032
-k.2 .072 1.199 2.8 .935 1.025
-3.8 .088 1.198 3.0 .950 1.020
-3.4 .108 1.197 3.4 971 1.011
-3.0 .132 1.197 3.8 .985 1.006
-2.8 L1145 1.196 4.2 .993 1.003
~-2.6 .160 1.195 4.6 .997 1.001
-2.4 177 1.194 5.0 .999 1.001
-2.2 .195 1.192 5.4 1.000 1.000
-2.0 214 1.191 5.6 | —meee | mmme-
-1.8 .235 1.189 6.0 | coeee | -
-1.6 .258 1.187
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. TABLE IT
' VELOCITY AND TEMPERATURE DISTRIBUTIONS
 IN COMPRESSIBLE CASE - Concluded

t

(¢) M =1.5

1 W T n W '
-12.6 0 1.450 -1.h4 0.310 1.407
-12.2 001 | cemme -1.2 .334 1.400
-11.8 001 | —emee -1.0 .359 1.392
-11.4 S0 o - JN [— -.8 .385 1.384,
-11.0 .002 | emeea -.6 A12 1.37h
-10.6 .003 | eeea- -4 Ry 1.363 .
-10.2 004 | e -.2 470 1.351
-9.8 [0 o] YN R—— 0 .500 1.338.
-9.4 007 | mema- .2 .531 1.323
-9.0 009 | —-na- o .564 1.307
-8.6 012 | eeee- .6 .596 1.290
-8.2 016 | emeem .8 .629 1.272

- -7.8 020 | emme- 1.0 662 .1.253
-7.4 025 | memee 1.2 694 1.233
~7.0 .030 ——— 1.k 727 1.213
-6.6 .037 1.449 1.6 - .758 - 1.192
-6.2 Nolin 1.449 . 1.8 .788 1.171
-5.8 .052 1.449 2.0 817 1.150
-5.4 .062 1.448 2.2 .84l 1.130
-5.0 .073 1.448 2.4 .869 1.111
-4 .6 .086 1.447 2.6 .801 1.093
4.2 , -1o2 1.445 2.8 .911 1.076
-3.8 .120 1. k440 - 3.0 .929 1.062
-3.4 142 1.441 3.4 .957 1.038
-3.0 167 1.438 3.8 - .976 | 1.021
-2.8 .180 1.435 4.2 . .988 1.011
-2.6 .196 1.433 4.6 .99k 1.005
-2.4 .212 1.430 5.0 998 |- 1.002
-2.2 .229 1.426 5.4 .999 1.001
-2.0 .248 1.422 5.6 1.000 1.000
-1.8 .267 1.418 6.0 1.000 1.000
-1.6 .288 . 1.413
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TABLE III

WAVE SPEEDS OF POSSIBLE NEUTRAL SUBSONIC DISTURBANCES

[?alues of wg = u*/U; defined by equation (70lj

A
My -
0.2 0.4 0.6 0.8 1.0
0 0.834% | 0.732 | 0.657 | 0.613 0.576
.5 .845 .T43 678 .632 .594
1| .8s1 762 .70k .66k 633
2 .878 .823 796 772 .762
5 .949 .940 941 .938 .938
10 .98k .981 .981 .982 .982

S NACA

TABLE IV

CONDITIONS ASSOCTATED WITH NEUTRAL SONIC DISTURBANCE

Conditions > ’
0.2 0.4 0.6 0.8 1.0
My >10 4.0 2.7 2.0 1.7
M, >1.92 .90 il 167 0
c ~1 91 .82 78 73
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TABLE V

WAVE NUMBER AND AMPLITUDE OF NEUTRAL OSCILLATIONS

Ey =n/2yZ, 6 = 1.160:]

(a) Wave nunber of neutral oscillations
for various Mach numbers

M Wave number, of
0 ' 0.459
5 45l
1.0 | 37Tk
1.5 .32k

N
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TABLE V

WAVE NUMBER AND AMPLITUDE OF NEUTRAL OSCILLATIONS - Continued

(b) Amplitude of neutral oscillations

for Ml =0
y ¢ ag/ay y ) ag/ay y g ag/ay
-6.4 | 0.001 | 0.001 -1.0 | 0.297 | 0.269 2.2 0.107 | -0.107
-6.2 .001L .001 -.9 .325 .281 2.4 .087 -.087
-6.0 .001 .001 -.8 .35k .291 2.6 .071 -.071
-5.8 .002 .002 -7 .383 .296 2.8 .058 -.058
-5.6 .002 .002 -.6 A2 . 2904 3.0 .048 -.048
-5.h .002 .003 -.5 L2 .286 3.2 .039 -.039
=5.2, .003 .003 -4 469 .269 3.k .032 -.032
-5.0 .004 Nelo)t -.3 495 .243 3.6 .026 -.026
-4.8 .005 .005 -.2 .518 . 206 3.8 .022 -.022
-4.6 .006 .007 -.1 .536 .159 4.0 .018 -.018
=hh .008 .008 0 .549 .103 4.2 Noent -.01k
[ -L.2 .009 .011 1 .556 040 4.4 .012 -.012
-4.0 .012 .013 .2 .557 | -.028 4.6 .010 -.010
-3.8.| .015 .016 .3 .550 | -.097 4.8 .008 -.008
-3.6 .018 .021 pn .537 | -.162 5.0 .007 -.007
-3.4 .023 .026 .5 .518 | -.220 5.2 .005 -.005
-3.2 .029 .032 .6 ALoL - 267 5.4 .00k - .00k
-3.0 .036 .0ko LT A465 | -.303 5.6 .00k -.00L
-2.8 .045 .050 .8 L34 1 -.325 5.8 .003 -.003
-2.6 .056 .062 .9 Lol | -.334 6.0 .002 -.002
-2.4 .070 077 1.0 .367 | -.332 6.2 .002 -.002
-2.2 | .087 .095 1.1 .335 | -.322 6.4 .002 -.002
-2.0 .108 .116 1.2 .303 | -.305 6.6 .001 -.001
-1.9 .120 .129 1.3 274 | -.283 6.8 .001 -.001
-1.8 134 142 1.4 247 | -.260 7.0 .001L -.001
-1.7 .149 .156 1.5 .222 | -.237
-1.6 .165 172 1.6 .199 | -.213
-1.5 .183 .188 1.7 179 | -.192
1.4 .202 .20k 1.8 JA61 | -.171
-1.3 .22k .221 1.9 JA45 | -.152
-1.2 247 .238 2.0 .131 | -.135
-1.1 .271 .254 2.1 J118 | -.113
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. TABLE V
WAVE NUMBER AND AMPLITUDE OF NEUTRAL OSCILLATIONS - Concluded
(c) Amplitude of neutral oscillations
for MJ_ =1
y ¢ ag/ay y P ap/ay |l ¥y p. | ag/ay
-7.4 | 0.003 | 0.003 0.3 | 0.551 | 0.28k4 2.9 | 0.122 | -0.106
-7.0 | .005 .003 -.2 .579 .273 3.0 L112 -.098
-6.6 .006 .005 -.1 .605 .254 || 3.1 .103 -.090
-6.2 .008 .006 0 .629 .227 3.2 .094 -.082
-5.8 | .01l .008 .1 .650 .190 3.3 .087 -.076
5.4 | 015 .011 .2 667 1420 ] 3.4 .079 -.070
-5.0 .020 .015 .3 .678 .085 3.6 .067 -.059
-4 .6 .026 .020 A .684 .020 3.8 .056 -.049
-4.2 .035 .026 5 | 682 | -.050 || 4.0 .048 -.0k2
. -3.8 .048 .035 6 O7h | -.121 4.2 040 -.035"
-3.4 L064 | .0LT .7 .658 | -.189 L4 .034 -.030
-3.0 .086 .063 .8 636 | -.249 4.6 .029 -.025
. -2.6| .115 .084 .9 609 | -.297 4.8 .02k -.021
-2.2 .153 Jd12 |f 1.0 577 | -.331 5.0 .020 -.018
-2.0 N .129 1.1 543 | -.351 5.2 .017 -.015
-1.9 .191 .138 1.2 .507 | -.359 5.4 .01k -.013
-1.8 .205 .148 1.3 L4710 ~.356 5.6 .012 -.011
-1.7 .220 .158 1.4 436 | -.34Y 5.8 .010 -.009
-1.6 .237 .169 1.5 403 | -.328 6.0 ..009 -.008
-1.5 .25k .180 1.6 .371 | -.308 6.2 .007 -.006
-1.h .273 .192 1.7 341 | -.288
-1.3 .292 . 204 1.8 .3.3 | -.267
-1.2 .313 217 1.9 .288 | -.246
-1.1 .336 229 2.0 264 | -.227 |k
-1.0 .359 242 2.1 .242. | -.209
-.9 .384 .254 2.2 .222 | -.192
-.8 410 .265 2.3 204 | -.177
-.7 437 .275 2.4 187 | -.163
-.6 465 .282 2.5 171 | -.150
-.5 .493 .287 2.6 157 | -.137
_" .522 .288 2.7 L .1kh | -.126
: 2.8 | -.132 | -.116
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F‘igure l.- Velocity distributions in the incompressible case. w =

¥ U1 - Uz
T]=_______;X=

/V]_**/Ul Ul + UZ
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) T e I IR B Lol 1 | | 1
2. -0 -8 -6 4 -2 O 2 4 6 8 10 12 14
7 (UP TO AN ADDITIVE GONSTANT) »~

(a) Velocity distributions. w = U*/uq.

Figure 2.- Velocity and temperature distributions in compressible case.
N=s— A= m'z 1.0; My, Mach number of moving stream.

vV lx*/Ul

Ms = O.
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20
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12 ‘ STABLE IN ]
) /ﬁ\mscm CASE 4//(/” |
/ y //M=(3—7)M2+4
8 4 = (3oy)-20-1)M,
B POSSIBLY UNSTABLE / STABLE 7]
4 s V4

. o v :
. // B

-16 7
— I —
-2.0 /
] W —
-2.4
| | | | | | | | | |
0 1.0 20 3.0 40 50 6.0 7.0 8.0 9.0 100

Figure 4.- Stable zones for isoenergetic case. 7 = 1.40; M] and Mp,

Mach numbers of two streams; wg, wave speed of neutral disturbance;
U1 and Up, velocities of two streams.
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Figure 5.- Geometry of critical curves for asymptotic solutioﬁs. .
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(b) For My = 0.5 and of = 0.45k.

1

= T]: l y* H
s

| 22 2v2 Yyxr/ug

¢, amplitude; o, wave number; 8, momentum-boundary-layer thickness;

6 = 1.160 in n-units.

Figure 6.- Amplitude of neutral oscillations. y
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(b) For Mj = 1.

Figure 7.F Extent of amplification at infinite Reymolds number.

1 1 ¥
— ;
2y/2 22 yv x*/uy

R, Reynolds number; c, dimensionless complex wave speed (cr + ici).

an . .
&, wave number; = wave length in y-units; y =

NACA-Langley - 1-28-53 - 1000
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